The growing need for modernizing dynamometers
Automotive or truck manufacturers or makers of components or sub-systems that go into a new vehicle already have test stands and dynamometer equipment that may be outdated and in need of drive/control retrofit. These customers who already have older test stands suffer from down time, trouble obtaining parts and excessive energy consumption.
OEMs looking to purchase test stands may want specialized features in the drive/control system and not every supplier can offer that. Or, they may be looking to purchase a new test stand or dynamometer and may want to specify certain equipment in addition. Our engineers will work with the test stand manufacturer on a special design as needed.
The background
A dynamometer is a necessity in automotive vehicle testing equipment used by OEMs, component suppliers and automotive testing service providers for recording several parameters such as force, torque, power and speed of the vehicle.
The use of this testing equipment is essential throughout the production cycle of an automobile, making it a necessary component of all vehicle assembly lines. This testing equipment is also used in vehicle engine manufacturing factories and dynamometer laboratories or the automotive testing service facilities to evaluate vehicle and engine performance.
Test stands and dynamometers cover a wide range of applications, but are most commonly used to test manufactured items for adherence to specification while simulating real-world operating conditions. While “test stand” is a more general term defining a machine that could test nearly any item including pumps, automotive components or electrical components, a “dynamometer” is used to measure torque or power and is more closely associated with motor or motor vehicle testing.
Application examples
A drive system is used in these applications to either provide motive force or absorb it, depending upon the type of test stand:
1,A pump test stand requiring a motor to spin the pump and a drive/control system to regulate the speed and torque delivered to said pump.
2,A dynamometer used to test an electric motor would require a second motor that would effectively act as a braking device to load the motor under test.The drive and control system would be required to absorb this energy while regulating the speed and torque during the test.
3,A third example would be a test stand designed to test rechargeable batteries. Here, no motive force is involved, but the test gear would charge and discharge the batteries in a controlled manner, allowing the batteries’ functionality to be evaluated.
Save energy!
Many test cell designs are energy wasters. Older technologies like water brakes, fan brakes or eddy current devices, for example, convert kinetic energy from the testing process to heat. Replacing these methods with a regenerative drive system can allow this wasted energy to be recaptured and returned to the power grid. In addition to reducing your carbon footprint, a solid-state drive system will quickly pay for itself in power bill savings. Energy saving features exist even within the drive system, like smart ventilation in the ACS580,ACS880 series that senses internal temperature and adjusts fan speed to save energy when the unit is lightly loaded, or in cooler ambient temperatures.
Green, clean, controlled power
INOMAX regenerative drives can harvest energy from the testing process and return it to the power grid, providing a substantial net reduction in a plant’s electric use. Older dynamometers that are widely in use simply burn off the excess power and dissipate it as heat, which is wasteful of resources. In the grand scheme of things, our engineering expertise in special equipment for electric and hybrid vehicle manufacturers contributes to these vehicles being efficiently manufactured and sold, resulting in less polluting gas and diesel-powered vehicles on the road.
Retrofits
INOMAX can provide a drive/control retrofit that will allow you to keep your existing mechanical equipment and enjoy more efficient operation. And, in many cases, better performance, and have the knowledge that the drive/control system is up to date and serviceable.